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A network as a substrate for dynamic processes may have its own dynamics. We propose a model for
networks which evolve together with diffusing particles through a coupled dynamics and investigate emerging
structural property. The model consists of an undirected weighted network of fixed mean degree and randomly
diffusing particles of fixed density. The weight w of an edge increases by the amount of traffics through its
connecting nodes or decreases by a constant factor. Edges are removed with the probability Prew=1 / �1+w� and
replaced by new ones having w=0 at random locations. We find that the model exhibits a structural phase
transition between the homogeneous phase characterized by an exponentially decaying degree distribution and
the heterogeneous phase characterized by the presence of hubs. The hubs emerge as a consequence of a
positive feedback between the particle and the edge dynamics.
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Complex networks have been the subject of extensive re-
searches for the last decade. They have a heterogeneous
structure, which makes them distinct from the periodic lattice
and the random network. Researches have been focused on
characterizing the structure and revealing the mechanism
leading to it �1–4�. Some complex networks play the role of
a substrate on which dynamic processes, either equilibrium
or nonequilibrium, take place. Implication of the structural
heterogeneity on the dynamic processes has also attracted a
lot of interests �5,6�.

In most studies dynamics of a network itself and addi-
tional degrees of freedom on it are treated separately. These
approaches are meaningful when characteristic time scales
associated with each of them are completely separated.
When they are comparable, one needs to consider the dy-
namics of both kinds of degrees of freedom simultaneously.
Along these lines, dynamic models for a social network
coupled with a game-theoretical dynamics or an opinion dy-
namics were studied in Refs. �7–10�. Also studied were
evolving network models coupled with self-organized critical
systems �11,12� and with a diffusing particle system �13�.

The coupled dynamics was also studied in a dynamic
model for a transportation or an information network by the
present authors in Ref. �14�. This study was motivated by the
synaptic plasticity in neural networks �15�. Synaptic links in
a neural network may strengthen or weaken depending on
synaptic activities, which results in a plastic deformation of a
network. In the model �14�, particles diffuse over a network
and edges are rewired at the rate depending on particle flows
in such a way that edges contributing more to transport are
more robust. It was found that the coupled dynamics leads to
an instability toward the formation of a hub. Although the
model is useful in studying the dynamical origin for the
emergence of a hub, it lacks a parameter with which one can
control the strength of the instability.

In this paper, we consider a model as an extension of the
study in Ref. �14�. The model consists of an undirected
weighted network and diffusing particles. There are N nodes
with the mean degree �k� and particles with the density �. An
edge e is assigned to a weight we�0, and a node can accom-
modate multiple particles. The edges, weights, and particles

evolve in time as follows. At each time step, every particle
hops independently to a neighboring node selected at ran-
dom. Whenever a node is reached by a particle, the weight of
all edges attached to it is increased by unity. Then, with the
probability prew=1 / �1+we�, each edge e is removed and re-
placed by a new one with w=0 between a pair of nodes
selected randomly. As a regularization procedure, the weight
of all edges are degraded by the factor r, i.e., we→ �1
−r�we for all e.

This model allows one to study the emerging property of
a complex network evolving through a coupled dynamics
with a transport system. For simplicity, we adopt the system
of noninteracting random walkers as a transport system.
Each edge is assigned to the weight which measures the
amount of traffics handled by connecting nodes. The random
walkers move along edges, while edges are rewired at the
rate which is a decreasing function of the weight. That is to
say, the more contribution to the traffic an edge makes, the
more robust it is.

When the degradation factor r is zero, the model reduces
to the one studied in Ref. �14�. It was shown that the coupled
dynamics between the edges and particles leads to an insta-
bility toward the formation of a hub. Interestingly, the hub
emerges in the two distinct ways. When the particle density
is low, the hub appears spontaneously after overcoming a
dynamic barrier via statistical fluctuations. On the other
hand, when the particle density is high, nodes compete for
edges and one of them survives as a hub eventually. In the
original model, the weight of an edge can increase indefi-
nitely, which may not be the case when an edge loses its
strength due to, e.g., aging. The current model incorporates
such an effect by introducing the degradation factor r. We
will show that the model with the degradation factor exhibits
richer behaviors.

The degradation factor r limits the growth of the edge
weight. Hence, the model can have a stationary state with
nonzero values of r. Furthermore, there may be a phase tran-
sition. When r is large, one expects that edges are rewired at
so high rates that the network remains like a random network
without any hub. In the opposite case with small r, edges
attached to a certain node may become robust by gaining
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larger weights. Such a node can grow into a hub as in the
case with r=0. Practically, we define the hub as a node
whose degree scales algebraically with the total number of
nodes.

We have performed numerical Monte Carlo simulations in
order to examine whether there is a transition between the
states with and without hubs. We present detailed results of
numerical simulation studies. Initially, we start with a ran-
dom network over which particles are distributed randomly.
The mean degree is fixed to �k�=4. Then we study the time
evolution and the stationary-state property of the system.

The degree distribution has been measured as one varies r
with fixed �=1, which is presented in Fig. 1. The degree
distribution function P�k� is defined as the fraction of nodes
having k edges. At r=0.2, the degree distribution in the sta-
tionary state aligns along a straight line in the semilog plot
�see Fig. 1�a��. This means that the degree distribution fol-
lows an exponential decay as P�k��e−k/k0. We observe a
distinct feature at r=0.01. While the degree distribution de-
cays at small values of k, there appears a peak in the large k
region. We will show later that both the number of nodes
contributing to the peak and the degree of them scale alge-
braically with the network size N, respectively. Namely, the
peak signals the emergence of multiple hubs. In the interme-
diate case with r=0.055, the degree distribution follows a
power law:

P�k� � k−�, �1�

with the exponent ��4.3.
Numerical data presented in Fig. 1 show that the model

undergoes a structural phase transition between the station-
ary states with and without hubs. Such phases will be de-
noted as a heterogeneous phase and a homogeneous phase,
respectively. The transition point can be estimated accurately
from the effective exponent defined as

�ef f�k� = − ln�P�ak�/P�k��/ln a , �2�

with a constant a=2. As a function of k, it will grow without
bound if the degree distribution decays exponentially. In the
presence of the peak for hubs, the effective exponent will be

a nonmonotonic function of k. If the degree distribution fol-
lows asymptotically a power law as P�k��k−�, the effective
exponent will converge to �.

In Fig. 2, we present the plot of the effective exponent at
several values of r at �=1.0. When N=1000 and r=0.055,
there appears a plateau at �ef f �4.3. Above and below r
=0.055, the effective exponent plot shows the characteristic
of the exponential decay and the peak for hubs, respectively.
Hence, we conclude that the structural phase transition takes
place at r=rc=0.055�5�. The degree distribution at r=rc fol-
lows the power-law decay with the exponent ��4.3. Note
that the plateau region widens as N increases. This implies
that the blowup of �ef f for k−1�0.02 is due to a finite-size
effect. Repeating this analysis at other values of r and N, we
obtain the numerical phase diagram as shown in Fig. 3. Al-
though a finite-size effect is rather large up to N=2000, the
numerical phase diagram shows a clear evidence for the
phase transition. The degree exponent remains almost con-
stant along the phase boundary.

We present an analytic theory, which explains the mecha-
nism of the phase transition. In order to describe the dynam-
ics, one needs to consider the degrees of all nodes, the
weights of all edges, and the particle occupation number at
all nodes. It is difficult to consider the whole dynamics, so
we develop an approximate theory as below.
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FIG. 1. �Color online� Time evolution of the degree distribution
at �a� r=0.20, �b� 0.055, and �c� 0.01. The curves at later time steps
are on top of each other since the system reaches the stationary
state. The network size is N=103 and the particle density is �
=1.0. Each data set is obtained by averaging over NS=103 samples.
The dashed line in �b� has a slope of −4.3.

10
-2

10
-1

10
0

k
-1

0

2

4

6

8

γ ef
f

r=0.070
r=0.060
r=0.055
r=0.050
r=0.040

FIG. 2. �Color online� Plots of the effective exponent �ef f�k� for
the degree distribution with the parameter values r=0.070, 0.060,
0.055, 0.050, and 0.040 from top to bottom. The network size of
N=1000 �solid lines� and N=2000 �dashed lines� and �=1.0.
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FIG. 3. Numerical phase diagram obtained from simulations
with N=1000 and 2000.
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Consider an arbitrary node i0. The degree of the node at
time t will be denoted by K�t�. We assume that there exists a
characteristic value of the weight ��t� for the K edges of i0.
We make a further assumption that the other part can be
regarded as a uniform medium, where edges are rewired at a
constant rate s. For these assumptions, our description is a
mean-field theory, which works only when structural hetero-
geneity of the system is negligible. It is not valid in the
heterogeneous phase with hubs since it loses self-
consistency. Nevertheless, we can learn when and why the
structural phase transition will occur from the breakdown of
self-consistency.

An edge gains a weight when particles arrive at its con-
necting nodes. Diffusing particles on complex networks
reach the stationary state very rapidly �16,17�. So we adopt a
quasistationary-state assumption that the particle distribution
is approximated by the stationary-state distribution to a given
network at each moment. The stationary-state particle distri-
bution function is strictly proportional to the degree �16�.
The quasistationary-state assumption, which was also made
in Ref. �14�, allows us to integrate out the particle degrees of
freedom. Then, the rate equation for the weight variable � in
time-continuum limit is given by

d�

dt
=

�K

�k�
+ � − r� . �3�

The first two terms account for the gain coming from the
visit of particles to the node i0 and its neighboring node,
respectively. The last term accounts for the loss due to the
degradation.

The degree variable K�t� follows the rate equation:

dK

dt
= s −

K

1 + �
. �4�

The first term accounts for the attachment of a randomly
rewired edge to i0, and the second term accounts for the
rewiring of each of the K edges with the probability 1 / �1
+��.

The flow governed by Eqs. �3� and �4� has an attracting
fixed point when r�rc with

rc =
s�

�k�
. �5�

The fixed point is located at

K0 =
s�r + ��
�r − rc�

, �0 =
�� + rc�
�r − rc�

. �6�

Irrespective of an initial condition, the flow converges to the
fixed point.

When r�rc, there does not exist an attracting fixed point
at finite values of K and �. They grow unboundedly. The
blowup solution invalidates the assumption that the network
remains homogeneous. It signals the emergence of a hub.
The flow pattern is sketched schematically in Fig. 4.

The mean-field theory confirms that the structural phase
transition indeed takes place. It also reveals the mechanism
for the emergence of the hub. Following Eq. �3�, an increase
in K accelerates the growth of �. Likewise, an increase in �

accelerates the growth of K. This shows that there is a posi-
tive feedback between K and �. Actually, the edge weight
growth is driven by diffusing particles. Therefore, we con-
clude that the coupled dynamics of the network and diffusing
particles can lead to the heterogeneous network structure.

Under the quasistationary-state assumption that the num-
ber of particles on a node is strictly proportional to its de-
gree, our model looks similar to the one studied in Ref. �18�.
The latter model, where edges are rewired preferentially to
higher degree nodes, also displays a structural phase transi-
tion accompanied by the condensation of edges. The differ-
ence is that our model does not assume explicitly the prefer-
ential rewiring. Instead, it is generated dynamically.
Furthermore, the edge weight and the rewiring probability
depend not only on the current values of the degree and the
particle number but also on their time history as one can see
in Eq. �3�.

We add a few remarks on the phase diagram. The numeri-
cal phase diagram in Fig. 3 shows a re-entrant behavior from
the homogeneous phase through the heterogeneous phase to
the homogeneous phase again as one increases the value of
�. The re-entrance is allowed by Eq. �5� since the rewiring
rate s, the number of rewrired edges per unit time divided by
the total number of nodes, can depend on r, �, and �k�. Our
mean-field theory does not predict the function form of s. We
could measure its value only numerically. We found that s�
increases from 0.25 to 0.30 as � varies from 0.2 to 0.3 at
fixed r=0.2 and �k�=4. On the other hand, s� decreases from
0.21 to 0.19 as � varies from 0.8 to 1.0 at fixed r=0.1 and
�k�=4. This tendency shows that Eq. �5� is consistent with
the re-entrant phase diagram qualitatively. Note also that s is
an increasing function of �k�. The more edges there are, the
more edges are rewired. This indicates that rc does not nec-
essarily decreases as one increases �k�. Numerically, we
found that rc��=1.0, �k�=8�=0.070�5�, which is even larger
than rc��=1.0, �k�=4�=0.055�5�.

The model displays an interesting scaling behavior in the
heterogeneous phase. Figure 5�a� shows the degree distribu-
tion at several values of N to a given value of �=1.0 and r
=0.01 belonging to the heterogeneous phase. There is a peak
corresponding to the hubs. As N increases, the peak shifts to
the right but does not sharpen nor broaden. This suggests that
the number of hubs scales algebraically with N and that their
degrees have the same order of magnitude scaling algebra-
ically with N. One can measure the number of hubs Nhub
from the spectral weight of the peak in P�k�. The numerical
data for Nhub are plotted in Fig. 5�b�, which shows that it
follows a power law:

(a)
K

Ω

(b)
K

Ω

FIG. 4. Schematic flow diagram in the �� ,K� plane when �a�
r�rc and �b� r�rc. The fixed point ��0 ,K0� is represented with a
filled circle in �a�.
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Nhub � Nq, �7�

with q�0.43. Figure 5�b� also shows that the maximum de-
gree kmax among all nodes follows a power law:

kmax � N	, �8�

with 	�0.64. The sum of the exponents is close to unity,
which indicates that the total number of edges Ktotal attached
to the hubs is proportional to N. Numerical data in Fig. 5�b�
show that

Ktotal � N
, �9�

with 
�1.07 which is very close to 1. The exponents q, 	,
and 
 remain constant in heterogeneous phase up to statisti-
cal errors.

The structural phase transition has a similarity to a con-
densation transition in the zero range process �ZRP� �19�. In
the ZRP, a unit mass hops from one site to another on a given
graph with a hopping rate depending on the total masses on
a departing site. The masses may undergo a condensation
transition between a fluid phase and a condensed phase. In
the fluid phase, masses are distributed uniformly. When there

is a strong on-site attraction among masses, a quenched dis-
order, or a structural heterogeneity in an underlying graph, a
finite fraction of the total masses can condense on a single
site to form a macroscopic condensate �17,19–21�.

The similarity between the condensation in the ZRP and
the emergence of hubs in network dynamics have already
been noticed in Ref. �22�. Regarding nodes and edges in the
network dynamics as sites and masses in the ZRP, respec-
tively, a hub can be seen as a condensate of edges. Apart
from the similarity, the structural phase transition in our
model has a distinct feature. In the context of the condensa-
tion, there exist multiple number of condensates �Nhub
�Nq�0� and the condensates are mesoscopic, that is to say,
their size scales sublinearly in N �khub�N	�1�. This is con-
trasted to the ZRP with a local dynamics, which has a single
macroscopic condensate in the condensed phase �19,20�.

Recent studies report that multiple mesoscopic conden-
sates appear when the dynamics is nonlocal in the sense that
the mass hopping rate depends not only on the local occupa-
tion number but also on the global parameter such as the
system size �22,23�. In our model, the edge rewiring dynam-
ics is purely local but coupled with the weight dynamics. We
leave it as a future work to understand the origin for the
emergence of multiple mesoscopic condensates in the con-
text of the ZRP.

In summary, we propose a dynamic model for networks
with the edge rewiring dynamics which is coupled to the
particle diffusion dynamics. The model displays a structural
phase transition between the homogeneous phase and the
inhomogeneous phase. The former is characterized by an ex-
ponential degree distribution and the latter is characterized
by the multiple mesoscopic hubs. Those hubs are the conse-
quence of the positive feedback between the edge and par-
ticle dynamics. Our work uncovers a mechanism how struc-
tural heterogeneity of complex networks can emerge.
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